замкнутое расширение

замкнутое расширение
closed extension мат.

Русско-английский научно-технический словарь Масловского. 2015.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • РАСШИРЕНИЕ — д и ф ф е р е н ц и а л ь н о г о п о л я F0 дифференциальное поле FЙF0. с таким множеством дифференцирований D, что ограничение D на F0 совпадает с множеством дифференцирований, заданных на F0. В свою очередь F0 будет д и ф ф ер е н ц и а л ь н… …   Математическая энциклопедия

  • РАСШИРЕНИЕ — п о л у г р у п п ы А полугруппа S, содержащая Ав качестве подполугруппы. Обычно речь идет о расширениях полугруппы А, связанных с Атеми или иными условиями. Наиболее развита теория идеальных Р. полугрупп (полугрупп, содержащих Ав качестве… …   Математическая энциклопедия

  • ЗАМКНУТОЕ ОТОБРАЖЕНИЕ — отображение одного топологич. пространства на другое, при к ром образ всякого замкнутого множества есть замкнутое множество. Класс непрерывных 3. о. играет важную роль в общей топологии и ее приложениях. Непрерывные замкнутые бикомпактные… …   Математическая энциклопедия

  • СОВЕРШЕННОЕ БИКОМПАКТНОЕ РАСШИРЕНИЕ — расширение Y вполне регулярного пространства X такое, что замыкание в Yграницы любого открытого множества служит границей O(U), где O(U) максимально открытое в У множество, для к рого Эквивалентные требования: а) для любой пары непересекающихся… …   Математическая энциклопедия

  • Алгебраически замкнутое поле — Для термина «Замыкание» см. другие значения. Алгебраически замкнутое поле  поле , в котором всякий многочлен ненулевой степени над имеет хотя бы один корень. Для любого поля существует единственное с точностью до изоморфизма его… …   Википедия

  • АЛГЕБРАИЧЕСКИ ЗАМКНУТОЕ ПОЛЕ — поле А:, в к ром всякий многочлен ненулевой степени над kимеет хотя бы один корень. В действительности, из алгебраич. замкнутости поля будет следовать, что каждый многочлен степени пнад kимеет в kровно пкорней, т. е. каждый неприводимый многочлен …   Математическая энциклопедия

  • ЗАМКНУТЫЙ ОПЕРАТОР — оператор А: такой, что из и следует и Ах=у (здесь X, Y банаховы пространства над одним и тем же полем скаляров и область определения оператора А). Понятие 3. о. распространяется и на операторы, действующие в отделимых линейных топологич.… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ — уравнение вида где многочлен n й степени от одного или нескольких переменных . А. у. с одним неизвестным наз. уравнение вида: Здесь п целое неотрицательное число, наз. коэффициентами уравнения и являются данными, хназ. неизвестным и является… …   Математическая энциклопедия

  • ЛИ ПОЛУПРОСТАЯ АЛГЕБРА — алгебра Ли, не имеющая ненулевых разрешимых идеалов (см. Ли разрешимая алгебра). В дальнейшем рассматриваются конечномерные Ли п. а. над полем kхарактеристики 0 (о Лн п. а. над полем ненулевой характеристики см. Ли алгебра). Полупростота… …   Математическая энциклопедия

  • РАЗМЕРНОСТЬ — топологического пространства X целочисленный инвариант dim X, определяемый следующим образом. Тогда и только тогда dim X = 1, когда . О непустом тополо гич. пространстве Xговорят, что оно не более чем n мерно, и пишут dim , если в любое конечное… …   Математическая энциклопедия

  • БЕСКОНЕЧНОМЕРНОЕ ПРОСТРАНСТВО — нормальное T1 пространство X(см. Нормальное пространство).такое, что ни для какого не выполняется неравенство и для любого найдется такое конечное открытое покрытие пространства , что любое вписанное в конечное открытое покрытие этого… …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”